Unplanned downtime poses a major challenge for organizations, and is estimated to cost Global 2000 companies on average $200 million per year. Beyond the financial impact, it can also erode customer trust and loyalty, decrease productivity, and even result in legal or privacy issues.

A 2024 ransomware attack on Change Healthcare, the medical-billing subsidiary of industry giant UnitedHealth Group—the biggest health and medical data breach in US history—exposed the data of around 190 million people and led to weeks of outages for medical groups. Another ransomware attack in 2024, this time on CDK Global, a software firm that works with nearly 15,000 auto dealerships in North America, led to around $1 billion worth of losses for car dealers as a result of the three-week disruption.

Managing risk and mitigating downtime is a growing challenge for businesses. As organizations become ever more interconnected, the expanding surface of networks and the rapid adoption of technologies like AI are exposing new vulnerabilities—and more opportunities for threat actors. Cyberattacks are also becoming increasingly sophisticated and damaging as AI-driven malware and malware-as-a-service platforms turbocharge attacks.

To prepare for these challenges head on, companies must take a more proactive approach to security and resilience. “We’ve had a traditional way of doing things that’s actually worked pretty well for maybe 15 to 20 years, but it’s been based on detecting an incident after the event,” says Chris Millington, global cyber resilience technical expert at Hitachi Vantara. “Now, we’ve got to be more preventative and use intelligence to focus on making the systems and business more resilient.”

Download the report.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff. It was researched, designed, and written entirely by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.


By